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Abstract-In developing footprint matching schemes for the 
NPOESS (National Polar-orbiting Operational Satellite System) 
CMIS (Conical-scanning Microwave Imager Sounder) and ATMS 
(Advanced Technology Microwave Sounder) instruments, we 
have set up an array of tests for evaluating spatial weighting 
patterns, radiometric fidelity, and retrieval skill for composite 
passive microwave measurements.  The purpose of the tests is 
two-fold.  First, footprint-matching methods can be tuned to 
adjust both the degree of match to a target pattern and the level 
of composite measurement radiometric noise.  Useful measures of 
each of these factors are needed in order to trade-off the benefits 
of each, complete the matching algorithm design, and run 
retrieval algorithms that use measurement error characteristics 
as a constraint.  Second, environmental parameter retrieval skill 
depends on the quality of the footprint matching design, and we 
need to be able to evaluate what radiometric and spatial quality 
levels are optimal with respect to retrieval performance.  To 
evaluate the diagnostic parameters, we simulated composite 
footprints from sensor patterns projected on a spherical-earth 
from a fixed satellite altitude.  Spatial quality metrics include 
measures of fit to the target pattern, 3dB contour size, side-lobe 
level, proportional weight within the 3dB contour, and weight 
beyond specified linear boundaries (e.g., X km from center). 
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I. INTRODUCTION 
Footprint matching has become commonplace for passive 

microwave data processing, with past applications to SSMI 
(Special Sensor Microwave/Imager), AMSU (Advanced 
Microwave Sounding Unit), and AMSR (Advanced 
Microwave Scanning Radiometer) [1][2][3].  We have 
developed footprint-matching algorithms for the NPOESS 
(National Polar-orbiting Operational Satellite System) CMIS 
(Conical-scanning Microwave Imager Sounder) [4] and ATMS 
(Advanced Technology Microwave Sounder) based on 
Backus-Gilbert optimization techniques [5][6].  The algorithms 
are designed to meet several objectives, including inter-
channel footprint collocation and shape match, ATMS 
collocation to CrIS (Cross-track Infrared Sounder) fields-of-
regard (FORs), correspondence to prescribed environmental 
data record (EDR) retrieval square cells (for CMIS), and 
composite brightness temperature (TB) radiometric noise 
minimization.  However, the critical test is the ability of the 
composite TBs to reduce errors when used in geophysical 
retrieval algorithms, and ideally the footprint matching 
algorithms would be revised through end-to-end retrieval tests 
with high-resolution natural scenes.  Although we are now in 
the process of building a simulation testbed for such tests, 
when complete it will be useful for retrieval error sensitivity 

tests but far too cumbersome for running iterative test and 
revision cycles for every footprint-matching scenario. 

We have developed a set of footprint-matching spatial and 
radiometric noise metrics that are intended to rigorously 
evaluate the characteristics of TB composites.  The goal is to 
provide practical measures of footprint matching performance 
that are independent of the natural scene and can be readily 
evaluated as footprint-matching algorithms are developed, 
tuned, and tested.  The diagnostic parameters can aid selection 
of target patterns as well as help characterize the overall 
retrieval error budget.  In this paper, we describe derivation of 
each metric, how it is useful, and general footprint matching 
algorithm practices that we have found to be helpful for 
reducing potential error sources. 

II. FOOTPRINT MATCHING APPROACH 
The footprint matching model builds a composite brightness 

temperature TBc from the coefficient ai-weighted sum of 
contributing sensor TB samples, TBi: 
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By definition, the ai sum to 1 but some may be negative.  The 
potential sample set can be thought of as all the sensor samples 
from a particular channel in a long section of the sensor swath.  
In practice, the set is smaller to eliminate the burden of zero or 
near-zero valued coefficients or in order to stabilize the 
algorithm’s solution for the ai.  If the sensor noise σi is 
independent per sample i (which is not strictly true because of 
correlated noise from shared calibration samples), the 
composite sample noise is given by: 
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where SNF stands for sample noise factor. 
The composite footprint (or composite field-of-view, CFOV) 

is the ai-weighted spatial superposition of all contributing 
sample footprints, Gi(ρ): 
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where ρ is an earth coordinate vector and, in the general case, 
the Gi differ in both shape and location from each other and the 
reference footprint that we want Gc to match.  To compute (3), 
we build earth-projected footprints on local regular grids for 
each sample, interpolated to a common reference grid, and 
compute the weighted sum at each point.  We choose the 
sample grids to be large enough to cover all points with 
significant sensor gain.  (Four-times the footprint 3dB field-of-
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view—or FOV—size is usually sufficient with eight-times 
used in some cases for validation of results.)  Each sample 
footprint is then normalized such that the integral over its local 
grid is 1, i.e.: 
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Truncation of some sample grids where they fall off the 

l properties of (3), 
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reference grid requires that (4) be recalculated for Gc to 
confirm that all of the composite footprint weight has been 
accounted for.  Off-grid excess weight is assigned to the 
appropriate spatial metrics defined below. 

Before addressing analysis of the spatia
e should briefly describe the method for generating the ai 

using the Backus-Gilbert approach.  (Details can be founding 
in [3], [4], and [5].)  The ai coefficient vector (length N) is 
given by: 

⎥
⎦

⎤
⎢
⎣

⎡ −
+= −

−
− u

uZu
vZuvZa 1T

1T
1 cos1cos γγ  (5) 

where 
 γγ sincos wEGZ += . (6) 

 is the N x N symmetric matrix whose el
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where E is the earth grid.  The N-elements of vector u are 

(8) 

The tuning coefficient γ in (6) balances composite sample 
no
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Setting γ=0 can yield a low-noise coefficient set but it is not 
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always equal to 1 here due to normalization of G(ρ) (4).  The 
elements of vector v represent the overlap between each 
sampled footprint and a reference footprint, Gr: 
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ise and spatial match in the minimization cost function.  (E 
is the error covariance matrix of the N samples but we can set 
it to the identity matrix, I, without loss of generality when 
independent sample noise is assumed; w is then chosen to 
equalize with the magnitude of G.).  With γ=0, (5) minimizes 
spatial match (resolution) without regard for noise based on the 
cost function: 
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guaranteed due to sensor footprint irregularities (even when Gr 
has a large FOV size).  Also, inversion of the matrix Z can be 
numerically noisy due to round-off errors when symmetry 
causes rows of G to be similar.  For the cross-track scanning 
ATMS—whose scan pattern is symmetric along track but with 
strong asymmetry along-scan due to the increase in FOV size 
with scan angle—we added a step for iterative optimization of 
both γ and N, with the N samples in each iteration chosen from 
those ranked highest in terms vi.  With up to 25 N and 38 γ 
values examined at each of 30 CrIS scan positions, it was 
impractical to use full 2-D analysis of Gc in this process and so 
intermediate spatial tests were used.  We performed full 
analysis only on the final γ -N selections. 

Although (8) and (9) allow for any refer r
e solution to (5) is more stable with respect to γ and N choice 

when the optimum value of (9) is not large.  Also, to meet the 

objective of inter-channel co-registration, we need to choose a 
Gr that the algorithm can fit all channels to with similar 
success.  For example, the main lobes of CMIS and ATMS 
footprints are approximately 2-D elliptical-Gaussian shapes 
with second-order features due to side-lobes and sensor motion 
during the sample integration period.  If Gr is chosen to be a 
top-hat shape falling to zero along sharp edges—or even a 
smoother Gaussian shape but with smaller FOV size than the 
some sensor footprints—significant mismatch error will 
remain in (9) for any ai set.  To minimize mismatch error, our 
approach has been to base Gr on elliptical-Gaussian or 
modified sensor footprints and, where appropriate, to also 
include along-scan convolution either to mimic sample 
integration (ATMS) or to reach a desired along-scan FOV size 
(CMIS).  We have attempted resolution enhancement—that is, 
choosing a Gr with FOV size smaller than the sensor—only on 
an experimental basis.  As discussed below, we plan to test Gr 
trade decisions for both TB estimation and retrieval skill using 
a high-resolution simulation testbed. 

III. COMPOSITE FOOTPRINT Q
osite footprint analysis includes evaluation of 

diometric and spatial metrics.  The key radiometric metric is 
SNF (2), but we also calculate a second metric—calibration 
noise factor—that accounts for calibration-induced correlated 
noise: 
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where Nc is the number of scans over which calibration data is 

 

averaged and δij is the smaller of the number of scan lines 
separating samples i and j or Nc.  The total composite sample 
variance is then given approximately by: 
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where k is the number of warm-load calibration samples and 

l metrics used during the 
tu

easure 
sid

increases the ambiguity in any simple definition of footprint 

σT is a single-sample radiometric noise (NEDT) for both earth-
scene and warm-load observations. 

We calculated intermediate spatia
ning process only along two orthogonal cuts (e.g., along-and 

cross-scan) through the reference footprint center.  (The 
metrics are quicker to evaluate plus they only require 
computation of (3) along the cuts.)  For primary fit analysis we 
used two metrics: (a) the mean absolute deviation to the 
reference footprint over distances equal to two times the 
reference FOV size in each direction, and (b) the root-mean-
square deviation over the same distances.  Although metric (b) 
is closer to the cost function (9), we concluded that (a) more 
accurately captures the effect mismatches would have in 
brightness temperature estimation.  We also calculated the 
composite footprint FOV size along each cut as a secondary 
confirmation of fit results.  The FOV size can be a poor 
measure of fit where the observations are undersampled 
(samples spaced farther apart than half the FOV size) or where 
there are second-order footprint spatial irregularities.   

A third important fit metric during tuning would m
e-lobe levels.  In tuning ATMS composites, we concluded 

that coefficient sets with any negative ai should be excluded in 
order to eliminate composite footprint side-lobes and regions 
with negative weight, which could be difficult to interpret in 
retrievals.  However, where side-lobes are allowed there is a 
trade between side-lobe level and main-beam resolution that 



 

resolution.  Without side-lobes, footprint weight that falls 
beyond the main-beam FOV is concentrated near it and 
decreases monotonically away from it.  With side-lobes, some 
of that weight is (presumably) transferred to within the FOV 
and the rest to more distant regions.  Our hypothesis is that 
larger single-lobe footprints will produce better, more 
consistent retrievals than smaller FOV footprints with side-
lobes.  And although a high-resolution testbed can test that 
conjecture for specific scenes, we believe the overall 
robustness of retrievals to scene spatial heterogeneity is 
improved when footprint weight is concentrated in one place. 

Following algorithm tuning, we conduct full 2-D analysis of 
Gc at selected scan positions.  (Smooth behavior of SNF and 
th

 

e intermediate spatial metrics across all scan positions 
validates the more limited 2-D analysis.)  First, visual 
inspection of the composite footprint contours (Fig. 1) reveals 
obvious side-lobes or FOV mismatch.  We then compute the 
following metrics for each composite 2-D footprint: 

1) Absolute fit error relative to the reference footprint: 
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2) Square root of the squared error relative
footprint (i.e., (9)): 
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3) Along-scan and cross-scan FOV size: Calculated as t
size of the smallest rectangle inscribed by the composite 
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otprint 3dB contour. 
4) Center-of-weight along-scan and cross-scan offset from 

the reference footprint center of weight:  The center-of-weight 
calculated from points within the footprint 3dB contour.  

The reference footprint center of weight is not at the beam 
peak at oblique incidence angles and the composite footprint 
peak is a poor measure of the center especially if 
undersampling results in rippling across the center of the 
footprint.   

5) Weight WITHIN 3dB contour of reference footprint:  
Total composite footprint weight integrated over the 3dB 
contour of the reference footprint, expressed as a percentage.  
This is an integral similar to (4) but only including the 
specified region.  For comparison, the weight within the 3dB 
contour for a circular Gaussian reference footprint is only 
about 50%. 

6) Maximum weight BEYOND coastline 1:  The maximum 
total composite footprint weight integrated separately over four 

gions tangent to the reference FOV.  That is, if Yr, Xr are the 
reference footprint cross-scan and along-scan FOV sizes, then 
the four regions are demarcated by y>Yr/2, y<Yr/2, x>Xr/2, and 
x<Xr/2 and can be thought of as the footprint weight falling 
across a linear coastline.  Large values indicate that either the 
composite FOV is much larger than the reference or that the 
composite has side-lobe-like spatial features.  Also includes 
the “off-grid” weight.  For comparison, the weight for a 
circular Gaussian reference footprint is about 14%. 

7) Maximum weight BEYOND coastline 2:  Same as above 
only the four regions are farther from the footprint center: 
y>Yr, y<Yr, x>Xr, and x<Xr.  Also includes the “off-grid” 
weight.  For comparison, the weight for a circular Gaussian 
reference footprint is about 2%. 

8) Maximum side-lobe level:  Value of any local maxima 
beyond the 3dB contour in te
footprint peak. 
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xample composite contour plots for ATMS channels 3 (top) and 17 
Rs 1 and 15.  Contours are plotted at -3, -10, -20, and -30dB.  Also 

:  Composite footprint center of weight (*) (reference footprint is 
t plot origin), locations of each contributing ATMS sample (+), an 
le ATMS 3dB contour, and the reference footprint 3dB contour. 
en matched to a 3.3° static (i.e., not elongated 

n 

 plots the final composite footprint metrics for ATMS 
 3, which has a nominal instantaneous beamwidth of 
 has be
motion) circular-Gaussian beam footprint.  SNF and 
etrics are fairly consistent across the scan with some 
ue to scan-position dependent footprint size, second-
racteristics, and tuning.  The footprint weight metrics 
dB and beyond coastlines 1 and 2) are very close to 

es obtained for a circular Gaussian footprint.  Side-
els are negligible meaning that the footprint weight 
s monotonically away from the 3dB contour.  Shifts in 
r-of-weight are small compared to the FOV size.   
atched ATMS channel 17, which has a 1.1° nominal 
th, to the same reference footprint as channel 3 (Fig. 

critical weight metrics (including those not shown i
re similar to channel 3 across the entire scan. The 

ferences are the lower SNF and fact that the fit error 
e.g., absolute error) peak at the center of scan.  This is 
lt of undersampling, as shown in Fig. 1, which 
 rippling across the composite footprint even though 
nce FOV size is closely matched.  



 

IV. CONCLUSION 
In this paper, we h t of radiometric and 

spatial tests useful omposite brightness 
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mperature sample quality.  Without a capability for complete 
end-to-end analysis of retrieval error impacts it is not possible 
to objectively optimize composite sample noise and spatial 
characteristics with regard to environmental parameter 
retrieval skill.  For end-to-end retrieval evaluation, we are 
developing a 3-D, high-resolution (~3 km) simulation testbed 

based on numerical weather model fields and simulated surface 
parameters (e.g., emissivities).  The testbed will allow 
evaluation of the CMIS footprint-matching algorithm and 
retrieval performance under controlled, well-characterized 
conditions that allow specific error sources to be isolated, 
evaluated, and minimized.  However, even with this capability 
intermediate spatial analyses are needed for quicker composite 
footprint evaluation during footprint matching algorithm 
tuning.  Our plan is to use the testbed to establish composite 
sample radiometric and spatial quality goals based on the 
metrics described here and then define and tune the footprint-
matching algorithm separately to achieve those goals.  The 
testbed can also provide another tier of radiometric spatial 
fidelity tests for final analysis of composite footprint 
characteristics.  
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